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Preface 

I am happy for you to see this Fifth Edition of Introduction to Linear Algebra. 

This is the text for my video lectures on MIT's OpenCourseWare (ocw.mit.edu and 

also YouTube). I hope those lectures will be useful to you (maybe even enjoyable!). 

Hundreds of coll�ges and universities have chosen this textbook for their basic linear 

algebra course. A sabbatical gave me a chance to prepare two new chapters about 

probability and statistics and understanding data. Thousands of other improvements too­

probably only noticed by the author. . . Here is a new addition for students and all readers: 

Every section opens with a brief summary to explain its contents. When you 

read a new section, and when you revisit a section to review and organize 

it in your mind, those lines are a quick guide and an aid to memory. 

Another big change comes on this book's website math.mit.edu/linearalgebra. That site 

now contains solutions to the Problem Sets in the book. With unlimited space, this is 

much more flexible than printing short solutions. There are three key websites : 

ocw.mit.edu Messages come from thousands of students and faculty about linear algebra 

on this OpenCourseWare site. The 18.06 and 18.06 SC courses include video lectures of 

a complete semester of classes. Those lectures offer an independent review of the whole 

subject based on this textbook-the professor's time stays free and the student's time can 

be 2 a.m. (The reader doesn't have to be in a class at all.) Six million viewers around the 

world have seen these videos (amazing). I hope you find them helpful. 

web.mit.edu/18.06 This site has homeworks and exams (with solutions) for the current 

course as it is taught, and as far back as 1996. There are also review questions, Java demos, 

Teaching Codes, and short essays (and the video lectures). My goal is to make this book 

as useful to you as possible, with all the course material we can provide. 

math.mit.edu/linearalgebra This has become an active website. It now has Solutions 

to Exercises-with space to explain ideas. There are also new exercises from many dif­

ferent sources-practice problems, development of textbook examples, codes in MATLAB 

and Julia and Python, plus whole collections of exams (18.06 and others) for review. 

Please visit this linear algebra site. Send suggestions to linearalgebrabook@gmail.com 

V 



vi Preface 

The Fifth Edition 

The cover shows the Four Fundamental Subspaces-the row space and nullspace are 

on the left side, the column space and the nulls pace of AT are on the right. It is not usual 

to put the central ideas of the subject on display like this! When you meet those four spaces 

in Chapter 3, you will understand why that picture is so central to linear algebra. 

Those were named the Four Fundamental Subspaces in my first book, and they start 

from a matrix A. Each row of A is a vector in n-dimensional space. When the matrix 

has m rows, each column is a vector in m-dimensional space. The crucial operation in 

linear algebra is to take linear combinations of column vectors. This is exactly the result 

of a matrix-vector multiplication. Ax is a combination of the columns of A. 

When we take all combinations Ax of the column vectors, we get the column space. 

If this space includes the vector b, we can solve the equation Ax = b. 

May I call special attention to Section 1.3, where these ideas come early-with two 

specific examples. You are not expected to catch every detail of vector spaces in one day! 

But you will see the first matrices in the book, and a picture of their column spaces. 

There is even an inverse matrix and its connection to calculus. You will be learning the 

language of linear algebra in the best and most efficient way: by using it. 

Every section of the basic course ends with a large collection of review problems. They 

ask you to use the ideas in that section--the dimension of the column space, a basis for 

that space, the rank and inverse and determinant and eigenvalues of A. Many problems 

look for computations by hand on a small matrix, and they have been highly praised. The 

Challenge Problems go a step further, and sometimes deeper. Let me give four examples: 

Section 2.1: Which row exchanges of a Sudoku matrix produce another Sudoku matrix? 

Section 2.7: If Pis a permutation matrix, why is some power pk equal to I? 

Section 3.4: If Ax= band Cx = b have the same solutions for every b, does A equal C? 

Section 4.1: What conditions on the four vectors r, n, c, £ allow them to be bases for 

the row space, the nullspace, the column space, and the left nullspace of a 2 by 2 matrix? 

The Start of the Course 

The equation Ax = b uses the language of linear combinations right away. The vector 

Ax is a combination of the columns of A. The equation is asking for a combination that 

produces b. The solution vector x comes at three levels and all are important: 

1. Direct solution to find x by forward elimination and back substitution.

2. Matrix solution using the inverse matrix: x = A-
1
b (if A has an inverse).

3. Particular solution (to Ay = b) plus nullspace solution (to Az = 0).

That vector space solution x = y + z is shown on the cover of the book.
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Direct elimination is the most frequently used algorithm in scientific computing. The 
matrix A becomes triangular-then solutions come quickly. We also see bases for the four 
subspaces. But don't spend forever on practicing elimination . . . good ideas are coming. 

The speed of every new supercomputer is tested on Ax = b : pure linear algebra. But 
even a supercomputer doesn't want the inverse matrix: too slow. Inverses give the simplest 
formula x = A-lb but not the top speed. And everyone must know that determinants are 
even slower-there is no way a linear algebra course should begin with formulas for the 
determinant of an n by n matrix. Those formulas have a place, but not first place. 

Structure of the Textbook 

Already in this preface, you can see the style of the book and its goal. That goal is serious, 
to explain this beautiful and usefulpart of mathematics. You will see how the applications 
of linear algebra reinforce the key ideas. This book moves gradually and steadily from 
numbers to vectors to subspaces-each level comes naturally and everyone can get it. 

Here are 12 points about learning and teaching from this book : 

1. Chapter 1 starts with vectors and dot products. If the class has met them before,
focus quickly on linear combinations. Section 1.3 provides three independent
vectors whose combinations fill all of 3-dimensional space, and three dependent
vectors in a plane. Those two examples are the beginning of linear algebra.

2. Chapter 2 shows the row picture and the column picture of Ax = b. The heart of
linear algebra is in that connection between the rows of A and the columns of A :
the same numbers but very different pictures. Then begins the algebra of matrices:
an elimination matrix E multiplies A to produce a zero. The goal is to capture
the whole process-start with A, multiply by E's, end with U.

Elimination is seen in the beautiful form A = LU. The lower triangular L holds
the forward elimination steps, and U is upper triangular for back substitution.

3. Chapter 3 is linear algebra at the best level: subspaces. The column space contains
all linear combinations of the columns. The crucial question is: How many of those

columns are needed? The answer tells us the dimension of the column space, and
the key information about A. We reach the Fundamental Theorem of Linear Algebra.

4. With more equations than unknowns, it is almost sure that Ax = b has no solution.
We cannot throw out every measurement that is close but not perfectly exact!
When we solve by least squares, the key will be the matrix AT A. This wonderful
matrix appears everywhere in applied mathematics, when A is rectangular.

5. Determinants give formulas for all that has come before-Cramer's Rule,
inverse matrices, volumes inn dimensions. We don't need those formulas to com­
pute. They slow us down. But det A = 0 tells when a matrix is singular : this is
the key to eigenvalues.
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6. Section 6 .1 explains eigenvalues for 2 by 2 matrices. Many courses want to see
eigenvalues early. It is completely reasonable to come here directly from Chapter 3,
because the determinant is easy for a 2 by 2 matrix. The key equation is Ax= >.x.

Eigenvalues and eigenvectors are an astonishing way to understand a square matrix.
They are not for Ax = b, they are for dynamic equations like du/ dt = Au.
The idea is always the same: follow the eigenvectors. In those special directions,
A acts like a single number (the eigenvalue>.) and the problem is one-dimensional.

An essential highlight of Chapter 6 is diagonalizing a symmetric matrix.
When all the eigenvalues are positive, the matrix is "positive definite". This key
idea connects the whole course-positive pivots and determinants and eigenvalues
and energy. I work hard to reach this point in the book and to explain it by examples.

7. Chapter 7 is new. It introduces singular values and singular vectors. They separate
all martices into simple pieces, ranked in order of their importance. You will see
one way to compress an image. Especially you can analyze a matrix full of data.

8. Chapter 8 explains linear transformations. This is geometry without axes, algebra
with no coordinates. When we choose a basis, we reach the best possible matrix.

9. Chapter 9 moves from real numbers and vectors to complex vectors and matrices.
The Fourier matrix F is the most important complex matrix we will ever see. And
the Fast Fourier Transform (multiplying quickly by F and p-1) is revolutionary.

10. Chapter 10 is full of applications, more than any single course could need:

10.1 Graphs and Networks-leading to the edge-node matrix for Kirchhoff's Laws

10.2 Matrices in Engineering-differential equations parallel to matrix equations

10.3 Markov Matrices-as in Google's PageRank algorithm

10.4 Linear Programming-a new requirement x 2'. 0 and minimization of the cost

10.5 Fourier Series-linear algebra for functions and digital signal processing

10.6 Computer Graphics-matrices move and rotate and compress images

10.7 Linear Algebra in Cryptography-this new section was fun to write. The Hill
Cipher is not too secure. It uses modular arithmetic: integers from O to p - 1. 
Multiplication gives 4 x 5 = 1 (mod 19). For decoding this gives 4- 1 

= 5. 

11. How should computing be included in a linear algebra course? It can open a new
understanding of matrices-every class will find a balance. MATLAB and Maple and
Mathematica are powerful in different ways. Julia and Python are free and directly
accessible on the Web. Those newer languages are powerful too !

Basic commands begin in Chapter 2. Then Chapter 11 moves toward professional al­
gorithms.You can upload and download codes for this course on the website.

12. Chapter 12 on Probability and Statistics is new, with truly important applications.
When random variables are not independent we get covariance matrices. Fortunately
they are symmetric positive definite. The linear algebra in Chapter 6 is needed now.
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The Variety of Linear Algebra 

Calculus is mostly about one special operation (the derivative) and its inverse (the integral). 

Of course I admit that calculus could be important .... But so many applications of math­

ematics are discrete rather than continuous, digital rather than analog. The century of data 

has begun! You will find a light-hearted essay called "Too Much Calculus" on my website. 

The truth is that vectors and matrices have become the language to know. 

Part of that language is the wonderful variety of matrices. Let me give three examples: 

Symmetric matrix Orthogonal matrix Triangular matrix 

-1
2

-1
0

0
-1

2
-1 ol l

1 

0 1 1
-� 2 �

1
-1

1
-1

1
1

-1
-1 -�1 l� � � �1-1 0 0 1 1 

1 0 0 0 1 

A key goal is learning to "read" a matrix. You need to see the meaning in the numbers. 

This is really the essence of mathematics-patterns and their meaning. 

I have used italics and boldface to pick out the key words on each page. I know there 

are times when you want to read quickly, looking for the important lines. 

May I end with this thought for professors. You might feel that the direction is right, 

and wonder if your students are ready. Just give them a chance! Literally thousands of 

students have written to me, frequently with suggestions and surprisingly often with thanks. 

They know this course has a purpose, because the professor and the book are on their side. 

Linear algebra is a fantastic subject, enjoy it. 

Help With This Book 

The greatest encouragement of all is the feeling that you are doing something worthwhile 

with your life. Hundreds of generous readers have sent ideas and examples and corrections 

(and favorite matrices) that appear in this book. Thank you all. 

One person has helped with every word in this book. He is Ashley C. Fernandes, who 

prepared the Jb.T]3X files. It is now six books that he has allowed me to write and rewrite, 

aiming for accuracy and also for life. Working with friends is a happy way to live. 

Friends inside and outside the MIT math department have been wonderful. Alan 

Edelman for Julia and much more, Alex Townsend for the flag examples in 7.1, and 

Peter Kempthorne for the finance example in 7.3: those stand out. Don Spickler's website 

on cryptography is simply excellent. I thank Jon Bloom, Jack Dongarra, Hilary Finucane, 

Pavel Grinfeld, Randy LeVeque, David Vogan, Liang Wang, and Karen Willcox. 

The "eigenfaces" in 7.3 came from Matthew Turk and Jeff Jauregui. And the big step 

to singular values was accelerated by Raj Rao's great course at Michigan. 

This book owes so much to my happy sabbatical in Oxford. Thank you, Nick Trefethen 

and everyone. Especially you the reader! Best wishes in your work. 
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Background of the Author 

This is my 9th textbook on linear algebra, and I hesitate to write about myself. It is the 
mathematics that is important, and the reader. The next paragraphs add something brief 
and personal, as a way to say that textbooks are written by people. 

I was born in Chicago and went to school in Washington and Cincinnati and St. Louis. 
My college was MIT (and my linear algebra course was extremely abstract). After that 
came Oxford and UCLA, then back to MIT for a very long time. I don't know how many 
thousands of students have taken 18.06 (more than 6 million when you include the videos 
on ocw.mit.edu). The time for a fresh approach was right, because this fantastic subject 
was only revealed to math majors-we needed to open linear algebra to the world. 

I am so grateful for a life of teaching mathematics, more than I could possibly tell you. 

Gilbert Strang 

PS I hope the next book (2018 ?) will include Learning from Data. This subject is grow­
ing quickly, especially "deep learning". By knowing a function on a training set of old data, 
we approximate the function on new data. The approximation only uses one simple non­
linear function f(x) = max(0, x). It is n matrix multiplications that we optimize to make 
the learning deep: X1 = f(A1x + b1), X2 = f(A2x1 + b2), ... , Xn = f(AnXn-1 + bn )­
Those are n -1 hidden layers between the input x and the output Xn-which approximates 
F ( x) on the training set. 

THE MATRIX ALPHABET 

A Any Matrix p Permutation Matrix 

B Basis Matrix p Projection Matrix 

C Cofactor Matrix Q Orthogonal Matrix 

D Diagonal Matrix R Upper Triangular Matrix 

E Elimination Matrix R Reduced Echelon Matrix 

F Fourier Matrix s Symmetric Matrix 

H Hadamard Matrix T Linear Transformation 

I Identity Matrix u Upper Triangular Matrix

J Jordan Matrix u Left Singular Vectors

K Stiffness Matrix V Right Singular Vectors

L Lower Triangular Matrix X Eigenvector Matrix

M Markov Matrix A Eigenvalue Matrix

N Nullspace Matrix :E Singular Value Matrix



Chapter 1 

Introduction to Vectors 

The heart of linear algebra is in two operations-both with vectors. We add vectors to get
v + w. We multiply them by numbers c and d to get cv and dw. Combining those two
operations (adding cv to dw) gives the linear combination cv + dw. 

Linear combination 

Example v + w = [ � ] + [ � ] [ ! ] is the combination with c = d = l

Linear combinations are all-important in this subject! Sometimes we want one partic­
ular combination, the specific choice c = 2 and d = l that produces cv + dw = ( 4, 5).
Other times we want all the combinations of v and w (coming from all c and d). 

The vectors cv lie along a line. When w is not on that line, the combinations cv + dw

fill the whole two-dimensional plane. Starting from four vectors u, v, w, z in four­
dimensional space, their combinations cu + dv + ew + f z are likely to fill the space­
but not always. The vectors and their combinations could lie in a plane or on a line.

Chapter 1 explains these central ideas, on which everything builds. We start with two­
dimensional vectors and three-dimensional vectors, which are reasonable to draw. Then
we move into higher dimensions. The really impressive feature of linear algebra is how
smoothly it takes that step into n-dimensional space. Your mental picture stays completely
correct, even if drawing a ten-dimensional vector is impossible. 

This is where the book is going (into n-dimensional space). The first steps are the
operations in Sections 1.1 and 1.2. Then Section 1.3 outlines three fundamental ideas. 

1.1 Vector addition v + w and linear combinations cv + dw.

1.2 The dot product v · w of two vectors and the length 11 v 11 = �-

1.3 Matrices A, linear equations Ax = b, solutions x = A - I b. 

1 
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1.1 Vectors and Linear Combinations 

1 3v + 5w is a typical linear combination cv + dw of the vectors v and w. 

2 For v = [ � ] and w = [ � ] that combination is 3 [ � ] + 5 [ � ] = [ � ! �� ] = [ �� 
] .

3 The vector [ � ] = [ � ] + [ � ] goes across to x = 2 and up to y = 3 in the xy plane.

4 The combinations c [ � ] + d [ � ] fill the whole xy plane. They produce every [ : ] .

5 The comb;nations c [ t ] +d [ ! ] fill a plane ill xyz space. Same plan doc [ t l · [ ! ] · 
C + 2d = 1

6 But c+ 3d = 0 
c+4d = 0 

has no solut;on because ;,s rights;de [ � ] ;, not on that plane. 

"You can't add apples and oranges." In a strange way, this is the reason for vectors. 
We have two separate numbers v1 and v2. That pair produces a two-dimensional vector v: 

Column vector v v1 = first component of v 
v2 = second component of v 

We write v as a column, not as a row. The main point so far is to have a single letter v 
(in boldface italic) for this pair of numbers v1 and v2 (in lightface italic).

Even if we don't add v1 to v2, we do add vectors. The first components of v and w 
stay separate from the second components: 

VECTOR 
ADDITION v = [ �� ] and w = [ :� ] [ 

V1 + W1 ] add to v + w = +V2 W2 

Subtraction follows the same idea: The components of v -ware v1 - w1 and v2 - w2. 
The other basic operation is scalar multiplication. Vectors can be multiplied by 2 or by 

-1 or by any number c. To find 2v, multiply each component of v by 2:

SCALAR 
MULTIPLICATION 2v = = V + V -V = [ 

2v1 ] [ -vi ]2v2 -v2 

The components of cv are cv1 and cv2. The number c is called a "scalar". 
Notice that the sum of -v and v is the zero vector. This is 0, which is not the same as 

the number zero! The vector O has components O and 0. Forgive me for hammering away 
at the difference between a vector and its components. Linear algebra is built on these 
operations v + w and cv and dw-adding vectors and multiplying by scalars.
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Linear Combinations 

Now we combine addition with scalar multiplication to produce a "linear combination"

of v and w. Multiply v by c and multiply w by d. Then add cv + dw. 

The sum of cv and dw is a linear combination cv + dw. 

Four special linear combinations are: sum, difference, zero, and a scalar multiple cv:

lv + lw
lv- lw
0v+0w 

cv+0w 

sum of vectors in Figure 1.1 a 
difference of vectors in Figure 1.1 b
zero vector 

vector cv in the direction of v

The zero vector is always a possible combination (its coefficients are zero). Every time we
see a "space" of vectors, that zero vector will be included. This big view, taking all the
combinations of v and w, is linear algebra at work. 

The figures show how you can visualize vectors. For algebra, we just need the com­
ponents (like 4 and 2). That vector v is represented by an arrow. The arrow goes v1 = 4
units to the right and v2 = 2 units up. It ends at the point whose x, y coordinates are 4, 2.
This point is another representation of the vector-so we have three ways to describe v: 

Represent vector v Two numbers Arrow from (0, 0) Point in the plane

We add using the numbers. We visualize v + w using arrows:
Vector addition (head to tail) At the end of v,place the start of w.

V = [ �]

4

� = [ �] 

��[�] 

Figure 1.1: Vector addition v + w = (3, 4) produces the diagonal of a parallelogram.
The reverse of w is -w. The linear combination on the right is v - w = (5, 0). 

We travel along v and then along w. Or we take the diagonal shortcut along v + w.

We could also go along w and then v. In other words, w + v gives the same answer as

v + w. These are different ways along the parallelogram (in this example it is a rectangle).
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Vectors in Three Dimensions 

A vector with two components corresponds to a point in the xy plane. The components of v are the coordinates of the point: x = v1 and y = v2. The arrow ends at this point ( v1, v2), when it starts from (0,0). Now we allow vectors to have three components (v1,v2,v3). The xy plane is replaced by three-dimensional xyz space. Here are typical vectors (still column vectors but with three components): 

·� Ul and w� m and v+w� m .
The vector v corresponds to an arrow in 3-space. Usually the arrow starts at the "origin", where the xyz axes meet and the coordinates are (0, 0, 0). The arrow ends at the point with coordinates v1, v2, v3• There is a perfect match between the column vector and the 
arrow from the origin and the point where the arrow ends. The vector ( x, y) in the plane is different from ( x, y, 0) in 3-space ! 

z 
y 

2 (3,2) HJ 
X 

3 
X rn 

Figu,e 1.2, Vectorn [;] and [;] correspond to points ( x, y) and ( x, y, z). 

From now on v � [ j] is also written a, v � (1, 1, -1).

The reason for the row form (in parentheses) is to save space. But v = (l, 1, -1) is not a row vector! It is in actuality a column vector, just temporarily lying down. The row vector [ 1 1 -1] is absolutely different, even though it has the same three components. That 1 by 3 row vector is the "transpose" of the 3 by 1 column vector v.
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In three dimensions, v + w is still found a component at a time. The sum has
components V1 + w1 and v2 + w2 and V3 + W3. You see how to add vectors in 4 or 5 
or n dimensions. When w starts at the end of v, the third side is v + w. The other way 
around the parallelogram is w + v. Question: Do the four sides all lie in the same plane? 
Yes. And the sum v + w - v - w goes completely around to produce the __ vector. 

A typical linear combination of three vectors in three dimensions is u + 4v - 2w: 

Linear combination 

Multiply by 1, 4, ---:2 

Then add 

The Important Questions 

For one vector u, the only linear combinations are the multiples cu. For two vectors, 
the combinations are cu+ dv. For three vectors, the combinations are cu + dv + ew. 

Will you take the big step from one combination to all combinations? Every c and d and 
e are allowed. Suppose the vectors u, v, w are in three-dimensional space: 

1. What is the picture of all combinations cu?

2. What is the picture of all combinations cu + dv?

3. What is the picture of all combinations cu+ dv + ew?

The answers ·depend on the particular vectors u, v, and w. If they were zero vectors ( a very 
extreme case), then every combination would be zero. If they are typical nonzero vectors 
(components chosen at random), here are the three answers. This is the key to our subject: 

1. The combinations cu fill a line through (0, 0, 0).

2. The combinations cu+ dv fill a plane through (0, 0, 0).

3. The combinations cu+ dv + ew fill three-dimensional space.

The zero vector (0, 0, 0) is on the line because c can be zero. It is on the plane because c 
and d could both be zero. The line of vectors cu is infinitely long (forward and backward). 
It is the plane of all cu + dv (combining two vectors in three-dimensional space) that 
I especially ask you to think about. 

Adding all cu on one line to all dv on the other line fills in the plane in Figure 1.3. 

When we include a third vector w, the multiples ew give a third line. Suppose that 

third line is not in the plane of u and v. Then combining all ew with all cu+ dv fills up 
the whole three-dimensional space. 

This is the typical situation! Line, then plane, then space. But other possibilities exist. 
When w happens to be cu + dv, that third vector w is in the plane of the first two. 
The combinations of u, v, w will not go outside that uv plane. We do not get the full 
three-dimensional space. Please think about the special cases in Problem 1. 
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Line containing all cu 

(a) (b) 

Plane from 
allcu+dv 

Figure 1.3: (a) Line through u. (b) The plane containing the lines through u and v. 

• REVIEW OF THE KEY IDEAS •

1. A vector v in two-dimensional space has two components v1 and v2. 

2. v + w = ( v1 + w1, v2 + w2) and cv = ( cv1, cv2) are found a component at a time.

3. A linear combination of three vectors u and v and w is cu+ dv + ew.

4. Take all linear combinations of u, or u and v, or u, v, w. In three dimensions,
those combinations typically fill a line, then a plane, then the whole space R3

. 

• WORKED EXAMPLES • 

1.1 A The linear combinations of v = (l, 1, 0) and w = (0, 1, 1) fill a plane in R3
. 

Describe that plane. Find a vector that is not a combination of v and w-not on the plane. 

Solution The plane of v and w contains all combinations cv + dw. The vectors in that 
plane allow any c and d. The plane of Figure 1.3 fills in between the two lines. 

Combffiations cv + dw - e [ i ] + d [ : ] - [ + ] fill a pfane. 

Four vectors in that plane are (0,0,0) and (2,3,1) and (5,7,2) and (7r,27r,7r). 
The second component c + d is always the sum of the first and third components. 
Like most vectors, (1, 2, 3) is not in the plane, because 2 =/- 1 + 3. 

Another description of this plane through ( 0, 0, 0) is to know that n = ( 1, -1, 1) is 
perpendicular to the plane. Section 1.2 will confirm that 90° angle by testing dot products: 
v · n = 0 and w · n = 0. Perpendicular vectors have zero dot products. 
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1.1 B For v = (l, 0) and w = (0, 1), describe all points cv with (1) whole numbers c 
(2) nonnegative numbers c 2: 0. Then add all vectors dw and describe all cv + dw.

Solution 

(1) The vectors cv = (c, 0) with whole numbers c are equally spaced points along the
x axis (the direction of v). They include ( -2, 0), ( -1, 0), (0, 0), (1, 0), (2, 0).

(2) The vectors cv with c 2: 0 fill a half-line. It is the positive x axis. This half-line
starts at (0, 0) where c = 0. It includes (100, 0) and (1r, 0) but not (-100, 0).

(1') Adding all vectors dw = (0, d) puts a vertical line through those equally spaced cv. 

We have infinitely many parallel lines from (whole number c, any number d). 

(2') Adding all vectors dw puts a vertical line through every cv on the half-line. Now we 
have a half-plane. The right half of the xy plane has any x 2'. 0 and any y. 

1.1 C Find two equations for c and d so that the linear combination cv + dw equals b: 

b=[�]-
Solution In applying mathematics, many problems have two parts: 

1 Modeling part Express the problem by a set of equations. 

2 Computational part Solve those equations by a fast and accurate algorithm. 

Here we are only asked for the first part (the equations). Chapter 2 is devoted to the second 
part (the solution). Our example fits into a fundamental model for linear algebra: 

Find n numbers C1, ... , Cn so that C1 V1 + · · · + Cn Vn = b. 

For n = 2 we will find a formula for the e's. The "elimination method" in Chapter 2 
succeeds far beyond n = 1000. For n greater than 1 billion, see Chapter 11. Here n = 2: 

Vector equation 
CV +dw = b

The required equations for c and d just come from the two components separately: 

Two ordinary equations 
2c - d = l 

-c+ 2d = 0

2 1 
Each equation produces a line. The two lines cross at the solution c = 3, d = 3. Why not

see this also as a matrix equation, since that is where we are going : 

2 by 2 matrix 
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Problem Set 1.1 

Problems 1-9 are about addition of vectors and linear combinations. 

1 Describe geometrically (line, plane, or all of R 
3) all linear combinations of

2 Draw v = [ 1] and w = [ -�] and v+w and v-w in a single xy plane.

3 If v + w = [ �] and v - w = [!],compute and draw the vectors v and w.

4 From v = [ � ]  and w = [;], find the components of 3v +wand cv + dw.

5 Compute u + v +wand 2u + 2v + w. How do you know u, v, w lie in a plane?

These lie in a plane because 

w = cu + dv. Find c and d 

6 Every combination of v = ( 1 , -2, 1) and w = ( 0, 1 , -1) has components that add
to __ . Find c and d so that cv + dw = (3, 3, -6). Why is (3, 3, 6) impossible? 

7 In the xy plane mark all nine of these linear combinations:

c[�]+d[�] with c=0, 1 , 2 and d=0, 1 , 2.

8 The parallelogram in Figure 1.1 has diagonal v + w. What is its other diagonal?
What is the sum of the two diagonals? Draw that vector sum. 

9 If three corners of a parallelogram are (1, 1), (4, 2), and (1, 3), what are all three of
the possible fourth corners? Draw two of them. 

Problems 10-14 are about special vectors on cubes and clocks in Figure 1.4. 

10 Which point of the cube is i + j? Which point is the vector sum of i = (1, 0, 0) and
j = (0, 1 , 0) and k = (0, 0, 1)? Describe all points (x, y, z) in the cube. 

11 Four corners of this unit cube are (0, 0, 0), (1 , 0, 0), (0, 1, 0), (0, 0, 1). What are the
other four corners? Find the coordinates of the center point of the cube. The center
points of the six faces are __ . The cube has how many edges? 

12 Review Question. In xyz space, where is the plane of all linear combinations of
i = (1 , 0, 0) and i + j = (1 , 1 , 0)? 
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k = (0, 0, 1) j + k - - - � 
/ I 

� - - - .. 

---po,}j = (0, 1, 0) 

I/ 

i = (1,0,0) 

Notice the illusion 

Is (0, 0, 0) a top or 
a bottom comer? 

Figure 1.4: Unit cube from i,j, k and twelve clock vectors. 

9 

13 (a) What is the sum V of the twelve vectors that go from the center of a clock to
the hours 1 :00, 2:00, ... , 12:00?

(b) If the 2:00 vector is removed, why do the 11 remaining vectors add to 8:00?

( c) What are the x, y components of that 2:00 vector v = ( cos 0, sin 0)?

14 Suppose the twelve vectors start from 6:00 at the bottom instead of (0, 0) at the 
center. The vector to 12:00 is doubled to (0, 2). The new twelve vectors add to __ . 

Problems 15-19 go further with linear combinations of v and w (Figure 1.Sa). 

15 Figure I.Sa shows½ v + ½ w. Mark the points¾ v +¼wand ¼ v +¼wand v + w.

16 Mark the point �v + 2w and any other combination cv + dw with c + d = l. 
Draw the line of all combinations that have c + d = l. 

17 Locate½ v +½wand� v + � w. The combinations cv + cw fill out what line? 

18 Restricted by O s cs 1 and O S d s 1, shade in all combinations cv + dw.

19 Restricted only by c :::0: 0 and d 2 0 draw the "cone" of all combinations cv + dw.

w w u 

V V 

(a) (b) 

Figure 1.5: Problems 15-19 in a plane Problems 20-25 in 3-dimensional space 
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Problems 20-25 deal with u, v, win three-dimensional space {see Figure L5b). 

20 Locate ½ u + ½ v + ½ w and ½ u + ½ w in Figure 1.5b. Challenge problem: Under
what restrictions on c, d, e, will the combinations cu + dv + ew fill in the dashed
triangle? To stay in the triangle, one requirement is c :2: 0, d :2'. 0, e :2: 0. 

21 The three sides of the dashed triangle are v - u and w - v and u - w. Their sum is
__ . Draw the head-to-tail addition around a plane triangle of (3, 1) plus ( -1, 1)
plus (-2, -2). 

22 Shade in the pyramid of combinations cu + dv + ew with c :2: 0, d :2'. 0, e :2: 0 and
c + d + e :::; 1. Mark the vector ½ ( u + v + w) as inside or outside this pyramid. 

23 If you look at all combinations of those u, v, and w, is there any vector that can't be
produced from cu+ dv + ew? Different answer if u, v, ware all in __ . 

24 Which vectors are combinations of u and v, and also combinations of v and w?

25 Draw vectors u, v, w so that their combinations cu + dv + ew fill only a line.
Find vectors u, v, w so that their combinations cu+ dv + ew fill only a plane. 

26 What combination c [ �] + d [ ! ] produces [ 1:] ? Express this question as two

equations for the coefficients c and d in the linear combination.

Challenge Problems 

27 How many corners does a cube have in 4 dimensions? How many 3D faces?
How many edges? A typical corner is (0, 0, 1, 0). A typical edge goes to (0, 1, 0, 0).

28 Find vectors v and w so that v + w = (4, 5, 6) and v - w = (2, 5, 8). This is a
question with __ unknown numbers, and an equal number of equations to find
those numbers. 

29 Find two different combinations of the three vectors u = (1, 3) and v = (2, 7) and
w = (1, 5) that produce b = (0, 1). Slightly delicate question: If I take any three
vectors u, v, w in the plane, will there always be two different combinations that
produce b = (0, 1)? 

30 The linear combinations of v = ( a, b) and w = ( c, d) fill the plane unless __ .
Find four vectors u, v, w, z with four components each so that their combinations
cu+ dv + ew + f z produce all vectors (b1, b2, b3, b4) in four-dimensional space. 

31 Write down three equations for c, d, e so that cu+ dv + ew = b. Can you somehow
find c, d, e for this b ?

w [-n 
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1.2 Lengths and Dot Products 

11 

1 The"dot product"ofv= [ �] andw= [:] isv·w=(1)(4) +(2)(5)= 4+ 10=14.
2 v = [ ! ] and w = [ -! ] are perpendicular because v · w is zero:2 4 (1)(4) + (3)(-4) + (2)(4) = 0. 
3 The length squa,-ed of v � [ ! ] is v, v � 1 + 9 + 4 � 14. The length is 11•11 � v'u.

V V 1 1 9 4 

[ 1 l 4 Then u = � = vl4 = v14 � has length I Jul I = 1. Check 14 + 14 + 14 = 1. 
V •W 

5 The angle0 betweenv andw hascos0= llvll llwll .
6 The angle between [ � ] and [ � ] has cos 0 = ( 1) tv'2) 

. That angle is 0 = 45 °.
7 All angles have I cos 0I :::; 1. So all vectors have I Iv· wl :::; I Iv! I I Jwl 1-I

The first section backed off from multiplying vectors. Now we go forward to define the "dot product" of v and w. This multiplication involves the separate products vt w1 and 
v2w2, but it doesn't stop there. Those two numbers are added to produce one number v · w.

This is the geometry section (lengths of vectors and cosines of angles between them). 

Thedotproductorinnerproductofv = (v1,v2) andw = (w1,w2) is the numberv-w : 

Example 1 The vectors v = ( 4, 2) and w = ( -1, 2) have a zero dot product: 
Dot product is zero 

Perpendicular vectors 

(1) 

In mathematics, zero is always a special number. For dot products, it means that these

two vectors are perpendicular. The angle between them is 90° . When we drew them in Figure 1. 1, we saw a rectangle (not just any parallelogram). The clearest example of perpendicular vectors is i = (1, 0) along the x axis and j = (0, 1) up they axis. Again the dot product is i · j = 0 + 0 = 0. Those vectors i and j form a right angle. 
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The dot product of v = (1, 2) and w = (3, 1) is 5. Soon v · w will reveal the angle 
between v and w (not go0 ). Please check that w ·vis also 5. 

The dot product w · v equals v · w. The order of v and w makes no difference. 

Example 2 Put a weight of 4 at the point x = -1 (left of zero) and a weight of 2 at the 
point x = 2 (right of zero). The x axis will balance on the center point (like a see-saw). 
The weights balance because the dot product is ( 4) ( -1) + ( 2) ( 2) = 0. 

This example is typical of engineering and science. The vector of weights is ( w1, w2) = 
( 4, 2). The vector of distances from the center is ( v1, v2) = (-1, 2). The weights times the 
distances, w1 v1 and w2v2, give the "moments". The equation for the see-saw to balance is
W1V1 + W2V2 = 0.

Example 3 Dot products enter in economics and business. We have three goods to buy 
and sell. Their prices are (p1, P2, p3) for each unit-this is the "price vector" p. The 
quantities we buy or sell are (q1,q2,q3)-positive when we sell, negative when we buy. 
Selling q1 units at the price p1 brings in q1p1. The total income (quantities q times prices
p) is the dot product q ·pin three dimensions:

Income = (qi, q2, q3) · (p1, P2, p3) = q1p1 + q2p2 + q3p3 = dot product.

A zero dot product means that "the books balance". Total sales equal total purchases if 
q · p = 0. Then p is perpendicular to q (in three-dimensional space). A supermarket with 
thousands of goods goes quickly into high dimensions. 

Small note: Spreadsheets have become essential in management. They compute linear 
combinations and dot products. What you see on the screen is a matrix. 

Main point For v · w, multiply each Vi times Wi. Then v · w = v1w1 + · · · + VnWn. 

Lengths and Unit Vectors 

An important case is the dot product of a vector with itself. In this case v equals w. 
When the vector is v = (1, 2, 3), the dot product with itself is v · v = llvll 2 = 14: 

Dot product v · v 
Length squared 

Instead of a goo angle between vectors we have 0° . The answer is not zero because v is not
perpendicular to itself. The dot product v · v gives the length of v squared. 

DEFINITION The length llvll of a vector vis the square root of v · v: 

length = llvll = � = (vf + v� + ... + v;)
1 12

.
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In two dimensions the length is v'vf + V§. In three dimensions it is v'vf + V§ + v�.
By the calculation above, the length of v = (1, 2, 3) is llvll = /14. 

Here llvll = � is just the ordinary length of the arrow that represents the vector.
If the components are 1 and 2, the arrow is the third side of a right triangle (Figure 1.6 ).
The Pythagoras formula a2 + b2 

= c2 connects the three sides: 12 + 22 
= llvll2.

For the length of v = (1, 2, 3) , we used the right triangle formula twice. The vector
(1, 2, 0) in the base has length v'5. This base vector is perpendicular to (0, 0, 3) that goes
straight up. So the diagonal of the box has length llvll = v5+9 = /14. 

The length of a four-dimensional vector would be v'vf + V§ + v� + v�. Thus the vec­
tor (1, 1, 1, 1) has length )12 + 12 + 12 + 12 = 2. This is the diagonal through a unit
cube in four-dimensional space. That diagonal in n dimensions has length fa. 

(0, 0, 3) - - - - - ""1 

I "
/ I 

(0, 2) (1, 2) (- - (1, 2, 3) has
V•V vf +vi+ v� length .JT4

12 + 22 
I I 

I I 

2 I I 

14 12 + 22 + 32 
I I 

(1, 0)
(0, 2, 0)

:('1,2,0)has
(1, 0, 0) length ,Js

Figure 1.6: The length VV-:V of two-dimensional and three-dimensional vectors.

The word "unit" is always indicating that some measurement equals "one". The unit
price is the price for one item. A unit cube has sides of length one. A unit circle is a circle
with radius one. Now we see the meaning of a "unit vector". 

DEFINITION A unit vector u is a vector whose length equals one. Then u · u = 1.

An example in four dimensions is u = ( ½, ½, ½, ½) . Then u · u is ¾ + ¾ + ¾ + ¾ = 1.
We divided v = (1, 1, 1, 1) by its length llvll = 2 to get this unit vector. 

Example 4 The standard unit vectors along the x and y axes are written i and j. In the
xy plane, the unit vector that makes an angle "theta" with the x axis is ( cos 0, sin 0): 

Unit vectors i = [�] and j = [�] and u = [ ��:!] . 
When 0 = 0, the horizontal vector u is i. When 0 = 90° (or � radians), the vertical
vector is j. At any angle, the components cos 0 and sin 0 produce u · u = 1 because
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cos2 0 + sin 2 0 = 1. These vectors reach out to the unit circle in Figure 1. 7. Thus cos 0 and
sin 0 are simply the coordinates of that point at angle 0 on the unit circle. 

Since (2, 2, 1) has length 3, the vector ( l, i, ½) has length l. Check that u · u 

½ + ½ + ½ = l. For a unit vector, divide any nonzero vector v by its length llvll-

Unit vector u = v I 11 v 11 is a unit vector in the same direction as v.

j = (0, 1) v=(l,1) j u = [ c�s0 ]
sm 0 

( 1 1 ) V 
-i

-j

u = 
../2 

, 
../2 

= 
M

i = (l,O)
Unit vectors 

cos 0
i 

Unit 
circle 

Figure 1.7: The coordinate vectors i and j. The unit vector u at angle 45° (left) divides
v = (1, 1) by its length llvll = \/'2. The unit vector u = ( cos 0, sin 0) is at angle 0. 

The Angle Between Two Vectors 

We stated that perpendicular vectors have v · w = 0. The dot product is zero when the
angle is go0

• To explain this, we have to connect angles to dot products. Then we show
how v · w finds the angle between any two nonzero vectors v and w. 

Right angles The dot product is v · w = 0 when v is perpendicular to w.

Proof When v and w are perpendicular, they form two sides of a right triangle.
The third side is v - w (the hypotenuse going across in Figure 1.8). The Pythagoras Law
for the sides of a right triangle is a2 

+ b2 = c2
: 

Perpendicular vectors llvll2 
+ llwll2 = llv - wll2 

Writing out the formulas for those lengths in two dimensions, this equation is

Pythagoras 

(2)

(3) 

The right side begins with vf - 2v1 w1 + wf. Then vf and wf are on both sides of the equa­
tion and they cancel, leaving -2v1 w1. Also v� and w� cancel, leaving -2v2w2.

(In three dimensions there would be -2v3w3.) Now divide by -2 to see v - w = 0: 

0 = -2v1w1 - 2v2w2 which leads to V1W1 + V2W2 = 0. (4)
Conclusion Right angles produce v · w = 0. The dot product is zero when the angle is
0 = go0

• Then cos 0 = 0. The zero vector v = 0 is perpendicular to every vector w
because O · w is always zero. 
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Now suppose v · w is not zero. It may be positive, it may be negative. The sign of
v · w immediately tells whether we are below or above a right angle. The angle is less than
go0 when v · w is positive. The angle is above go0 when v · w is negative. The right side
of Figure 1. 8 shows a typical vector v = ( 3, 1). The angle with w = ( 1, 3) is less than goo 

because v · w = 6 is positive. 

V •W = 0

.... - - -
angle with v
greater than 90 °
in this half-plane 

�v · w > 0
V 

in this half-plane

Figure 1.8: Perpendicular vectors have v · w = 0. Then llvll 2 
+ llwll 2 = llv - wll 2

. 

The borderline is where vectors are perpendicular to v. On that dividing line between
plus and minus, (1, -3) is perpendicular to (3, 1 ). The dot product is zero. 

The dot product reveals the exact angle 0. For unit vectors u and U, the sign of u · U
tells whether 0 < go0 or 0 > go0

• More than that, the dot product u · U is the cosine of
0. This remains true in n dimensions. 

Unit vectors u and U at angle 0 have u · U = cos 0. Certainly lu · UI ::::; 1.

Remember that cos 0 is never greater than 1. It is never less than -1. The dot product of
unit vectors is between -1 and 1. The cosine of 0 is revealed by u · U. 

Figure 1.9 shows this clearly when the vectors are u = (cos0,sin0) and i = (1,0).
The dot product is u · i = cos 0. That is the cosine of the angle between them. 

After rotation through any angle a, these are still unit vectors. The vector i = (1, 0)
rotates to ( cos a, sin a). The vector u rotates to ( cos /3, sin /3) with /3 = a + 0. Their
dot product is cos a cos /3 + sin a sin /3. From trigonometry this is cos(/3 - a) = cos 0. 

u = [c�s 0]
sm0 

[c�s /3] = usmf3 

[COSCJ,] _ U(.�/ sina -
�l�CI, 

0={3-a 
Figure 1.9: Unit vectors: u · U is the cosine of 0 (the angle between).



16 Chapter 1. Introduction to Vectors 

What if v and ware not unit vectors? Divide by their lengths to get u = v/llvll and
U = w/llwll- Then the dot product of those unit vectors u and U gives cos 0. 

COSINE FORMULA If v and w are nonzero vectors then
V •W 

--- =cos0. 
llvll llwll 

(5)

Whatever the angle, this dot product of v/llvll with w/llwll never exceeds one. That
is the "Schwarz inequality" Iv· wl ::::; llvll llwll for dot products-or more correctly the
Cauchy-Schwarz-Buniakowsky inequality. It was found in France and Germany and
Russia (and maybe elsewhere-it is the most important inequality in mathematics). 

Since I cos BJ never exceeds 1, the cosine formula gives two great inequalities: 

SCHWARZ INEQUALITY 

TRIANGLE INEQUALITY 

lv·wl s:; llvll llwll

llv + wll ::::; llvll + llwll

Example 5 Find cos 0 for v = [ � ] and w = [ � ] and check both inequalities.

Solution The dot product is v · w = 4. Both v and w have length )5. The cosine is 4/5.
V •W 

cosB = 
Jjvjj Jjwjj

4 4
)5)5 5

By the Schwarz inequality, v · w = 4 is less than jjvjj llwll = 5. By the triangle inequality,
side 3 = jjv + wjj is less than side 1 + side 2. For v + w = (3, 3) the three sides are
yl8 < v5 + )5. Square this triangle inequality to get 18 < 20. 

Example 6 The dot product of v = (a, b) and w = (b, a) is 2ab. Both lengths are
v' a2 + b2

. The Schwarz inequality v · w s:; I !vi 11 lwl I says that 2ab s:; a2 + b2
. 

This is more famous if we write x = a2 and y = b2
. The "geometric mean" vxfi

is not larger than the "arithmetic mean" = average ½ ( x + y).

Geometric ::::; Arithmetic a2 + b2 x + y 
ab s:; --

2
- becomes FY s:; -

2
-. 

mean mean 

Example 5 had a = 2 and b = 1. So x = 4 and y = 1. The geometric mean ,.jxfj = 2
is below the arithmetic mean ½ (1 + 4) = 2.5. 

Notes on Computing 

MATLAB, Python and Julia work directly with whole vectors, not their components.
When v and w have been defined, v + w is immediately understood. Input v and w
as rows-the prime ' transposes them to columns. 2v + 3w becomes 2 * v + 3 * w.
The result will be printed unless the line ends in a semicolon. 
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MATLAB v = [2 3 4]' ; w = [1 1 1]' ; u = 2 * v + 3 * w
The dot product v · w is a row vector times a column vector (use * instead of·) :

Instead of [;] · [ �] we more often see [ 1 2 ] [ �] or v 1 * w

17 

The length of v is known to MATLAB as norm ( v). This is sqrt ( v' * v). Then find the
cosine from the dot product v 1 * w and the angle (in radians) that has that cosine: 

Cosine formula 

The arc cosine 

cosine= v' * w/(norm (v) * norm (w))
angle = acos (cosine) 

An M-file would create a new function cosine ( v, w ). Python and Julia are open source.

• REVIEW OF THE KEY IDEAS •

1. The dot product v • w multiplies each component Vi by wi and adds all viwi. 

2. The length 11 v 11 is the square root of v · v. Then u = v / 11 v 11 is a unit vector : length 1.

3. The dot product is v · w = 0 when vectors v and w are perpendicular.

4. The cosine of 0 ( the angle between any nonzero v and w) never exceeds I:

Cosine 
V •W 

cosB = 
llvll llwll

Schwarz inequality 

• WORKED EXAMPLES • 

Iv· wl::; llvll llwll-

1.2 A For the vectors v = ( 3, 4) and w = ( 4, 3) test the Schwarz inequality on v · w
and the triangle inequality on llv + wll- Find cos0 for the angle between v and w.
Which v and w give equality Iv· wl=llvll llwll and llv + wll=llvll + llwll?

Solution The dot product is v · w = (3)(4) + (4)(3) = 24. The length of v is
llvll = v9 + 16 = 5 and also llwll = 5. The sum v + w = (7, 7) has length 7v12 < 10.

Schwarz inequality Iv· wl ::; llvll llwll is 24 < 25.

Triangle inequality llv + wll ::; llvll + llwll is 7v12 < 5 + 5.
Cosine of angle cos 0 = �: Thin angle from v = (3, 4) tow = ( 4, 3)

Equality: One vector is a multiple of the other as in w = cv. Then the angle is 0° or 180° .
In this case I cos01 = 1 and Iv· wl equals llvll llwll- If the angle is 0° , as in w = 2v, then
llv + wll=llvll + llwll (both sides give 3llvl l). This v, 2v, 3v triangle is flat! 
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1.2 B Find a unit vector u in the direction of v = (3, 4). Find a unit vector U that is 
perpendicular to u. How many possibilities for U? 

Solution For a unit vector u, divide v by its length llvll = 5. For a perpendicular vector 
V we can choose (-4, 3) since the dot product v ·Vis (3)(-4) + (4)(3) = 0. For a unit 
vector perpendicular to u, divide V by its length IIV II:

V (3 4) u = 
M 

= 
5'5 

u-U=O

The only other perpendicular unit vector would be -U = ( t, -¾). 

1.2 C Find a vector x = ( c, d) that has dot products x · r = 1 and x · s = 0 with 
two given vectors r = (2, -1) ands = (-1, 2). 

Solution Those two dot products give linear equations for c and d. Then x = ( c, d). 

X • T = l
X • S = 0

is 2c - d = l 
is - c+ 2d = 0 

The same equations as 

in Worked Example 1.1 C 

Comment on n equations for x = (x1, ... , Xn) inn-dimensional space 

Section 1.1 would start with columns v j · The goal is to produce x 1 v1 + · · · + Xn Vn = b.

This section would start from rows ri . Now the goal is to find x with x · Ti = bi . 
Soon the v's will be the columns of a matrix A, and the r's will be the rows of A.

Then the (one and only) problem will be to solve Ax = b.

Problem Set 1.2 

1 Calculate the dot products u · v and u · w and u · ( v + w) and w · v: 

V = [ !] w = [;].

2 Compute the lengths llull and llvll and llwll of those vectors. Check the Schwarz 
inequalities lu ·vi::::; llull llvll and Iv· wl ::::; llvll llwll. 

3 Find unit vectors in the directions of v and w in Problem 1, and the cosine of the 
angle 0. Choose vectors a, b, c that make 0° , 90° , and 180° angles with w. 

4 For any unit vectors v and w, find the dot products (actual numbers) of 

(a) v and -v (b) v + w and v - w (c) v - 2w and v + 2w

5 Find unit vectors u1 and u2 in the directions of v = (l, 3) and w = (2, 1, 2). 
Find unit vectors U 1 and U 2 that are perpendicular to u1 and u2. 
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6 ( a ) Describe every vector w = ( w1, w2) that is perpendicular to v = ( 2, -1). 
(b) All vectors perpendicular to V = (1, 1, 1) lie on a __ in 3 dimensions.
(c) The vectors perpendicular to both (1, 1, 1) and (1, 2, 3) lie on a _ _ .

7 Find the angle 0 (from its cosine) between these pairs of vectors: 
(a) V = [�] and w = [�] (b) V [j] and w

� Hl 
(c) V = [ �] and w = [ �] (d) V = [�] and w = [=� l 

8 True or false (give a reason if true or find a counterexample if false): 
(a) If u = (1, 1, 1) is perpendicular to v and w, then vis parallel tow.
(b) If u is perpendicular to v and w, then u is perpendicular to v + 2w.
(c) If u and v are perpendicular unit vectors then llu - v/1 = ,v2. Yes!
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9 The slopes of the arrows from (0, 0) to (v1, v2
) 

and (w1, w2
) 

are v2/v1 and w2/w1. Suppose the product v2w2 / v1 w1 of those slopes is -1. Show that v · w = 0 andthe vectors are perpendicular. (The line y = 4x is perpendicular to y = -¼ x.) 
10 Draw arrows from (0, 0) to the points v = (1, 2) and w = (-2, 1). Multiply their slopes. That answer is a signal that v · w = 0 and the arrows are __ . 
11 If v · w is negative, what does this say about the angle between v and w? Draw a 3-dimensional vector v (an arrow), and show where to find all w's with v · w < 0.
12 With v = (1, 1) and w = (1, 5) choose a number c so that w - cv is perpendicular to v. Then find the formula for c starting from any nonzero v and w. 
13 Find nonzero vectors v and w that are perpendicular to (1, 0, 1) and to each other. 
14 Find nonzero vectors u, v, w that are perpendicular to (1, 1, 1, 1) and to each other. 
15 The geometric mean of x = 2 and y = 8 is vX'fJ = 4. The arithmetic mean is larger: ½ ( x + y) = __ . This would come in Example 6 from the Schwarz inequality for v = ( J2, VS) and w = ( VS, J2). Find cos0 for this v and w. 
16 How long is the vector v = (1, 1, ... , 1) in 9 dimensions? Find a unit vector u in the same direction as v and a unit vector w that is perpendicular to v. 
17 What are the cosines of the angles a, f3, 0 between the vector ( 1, 0, -1) and the unit vectors i, j, k along the axes? Check the formula cos2 a + cos2 f3 + cos2 0 = 1. 




